• les dernières technologies innovantes en cours de développement ou en phase de lancement sur le marché.
  • les critiques de produits technologiques populaires, tels que les téléphones intelligents, les ordinateurs portables, les tablettes, les écouteurs, les caméras, etc.
  • des conseils sur la façon de rester en sécurité en ligne, notamment en ce qui concerne la protection de la vie privée, la sécurité des données et la prévention des escroqueries en ligne.
  • les dernières nouvelles et mises à jour dans le monde de la technologie, y compris les fusions et acquisitions, les partenariats, les changements de direction, etc.
Affichage des articles dont le libellé est Architecture hexagonale. Afficher tous les articles
Affichage des articles dont le libellé est Architecture hexagonale. Afficher tous les articles

mercredi 8 mai 2024

Intégration de l'architecture hexagonale dans un projet Quarkus avec des exemples Java



L'architecture hexagonale, également connue sous le nom de portes et adaptateurs ou architecture en oignon, est un modèle de conception logicielle qui favorise la séparation des préoccupations et la facilité de testabilité. En mettant l'accent sur la dépendance inverse, elle permet de créer des systèmes hautement modulaires et évolutifs. Dans cet article, nous explorerons comment intégrer l'architecture hexagonale dans un projet Quarkus en utilisant des exemples concrets en Java.

Comprendre l'architecture hexagonale

L'architecture hexagonale repose sur le principe de séparation des préoccupations en divisant l'application en trois couches principales : le domaine, les adaptateurs et l'infrastructure.

  • Le domaine représente le cœur métier de l'application, il contient les entités, les règles métier et les services.
  • Les adaptateurs, également appelés ports, sont les points d'entrée et de sortie de l'application. Ils permettent d'interagir avec le domaine en fournissant des interfaces pour les entrées (ports primaires) et les sorties (ports secondaires).
  • L'infrastructure est responsable de la mise en œuvre des adaptateurs. Elle comprend les bases de données, les API externes, les frameworks, etc.

Intégration de l'architecture hexagonale dans Quarkus

Quarkus est un framework Java open source conçu pour créer des applications cloud natives. Il offre une prise en charge de premier ordre pour les conteneurs, la réactivité et le développement rapide. Intégrer l'architecture hexagonale dans un projet Quarkus peut être réalisé en suivant quelques principes de conception simples.

Création du domaine

Commençons par définir le domaine de notre application. Supposons que nous construisons une application de gestion de tâches. Nous pouvons avoir des entités telles que Task, User, et des services comme TaskService qui implémentent la logique métier.


public class Task {
    private String id;
    private String title;
    private boolean completed;
    // Getters and setters
}

public interface TaskService {
    Task createTask(String title);
    Task markTaskAsCompleted(String taskId);
    List<Task> getAllTasks();
    // Other business methods
}
    

Implémentation des adaptateurs

Les adaptateurs fournissent des interfaces pour interagir avec le domaine. Dans notre exemple, nous pourrions avoir des adaptateurs pour interagir avec une base de données, une API REST, ou toute autre source de données.


@ApplicationScoped
public class TaskRepository implements TaskService {
    @Transactional
    public Task createTask(String title) {
        // Logic to persist task in database
    }

    @Transactional
    public Task markTaskAsCompleted(String taskId) {
        // Logic to mark task as completed in database
    }

    @Transactional
    public List<Task> getAllTasks() {
        // Logic to retrieve all tasks from database
    }
    // Other database interactions
}
    

Configuration de l'infrastructure

Dans Quarkus, la configuration de l'infrastructure peut être réalisée en utilisant les fonctionnalités natives de Quarkus pour la persistance des données, les appels REST, etc.


@QuarkusTest
public class TaskResourceTest {

    @Inject
    TaskService taskService;

    @Test
    public void testCreateTask() {
        // Test logic to create task via REST API
    }

    @Test
    public void testMarkTaskAsCompleted() {
        // Test logic to mark task as completed via REST API
    }

    @Test
    public void testGetAllTasks() {
        // Test logic to get all tasks via REST API
    }
}
    

Conclusion

En utilisant l'architecture hexagonale dans un projet Quarkus, nous pouvons créer des applications bien structurées, modulaires et faciles à tester. En séparant clairement le domaine des adaptateurs et de l'infrastructure, nous obtenons une meilleure maintenabilité et évolutivité de notre code. En combinant la flexibilité de Quarkus avec les principes de conception solides de l'architecture hexagonale, nous pouvons construire des applications Java robustes pour répondre aux besoins métier les plus exigeants.

lundi 3 juillet 2023

Révolutionnez vos applications avec Quarkus : Créez une architecture cloud performante et évolutive !

Comment créer une architecture cloud avec Quarkus

Introduction

Dans le domaine du développement d'applications modernes, l'architecture cloud est devenue une norme pour garantir la flexibilité, la scalabilité et la résilience. Quarkus, un framework Java nouvelle génération, offre une approche légère et réactive pour développer des applications cloud-native. Dans cet article, nous explorerons les étapes essentielles pour créer une architecture cloud avec Quarkus.

1. Comprendre les principes de l'architecture cloud-native

Avant de plonger dans la création d'une architecture cloud avec Quarkus, il est important de comprendre les principes fondamentaux de l'architecture cloud-native. Cela inclut la modularité, la distribution, l'évolutivité, la résilience et l'automatisation. Quarkus facilite l'adoption de ces principes grâce à ses fonctionnalités et son approche de développement.

2. Concevoir l'architecture de l'application

La première étape consiste à concevoir l'architecture de votre application cloud avec Quarkus. Identifiez les différents composants et services nécessaires pour répondre à vos besoins. Quarkus prend en charge diverses options de déploiement, telles que Kubernetes, AWS Lambda et Azure Functions, ce qui vous permet de choisir l'architecture qui convient le mieux à votre cas d'utilisation.Pour concevoir l'architecture cloud de votre application avec Quarkus, vous pouvez envisager une architecture en couches. Par exemple, vous pouvez créer une couche de présentation avec une interface utilisateur en utilisant Quarkus avec le framework Front-end Java Vaadin.

3. Développer les microservices avec Quarkus

Une architecture cloud repose souvent sur des microservices, qui sont des éléments indépendants et modulaires. Utilisez Quarkus pour développer vos microservices en utilisant les extensions pertinentes fournies par le framework. Quarkus offre une prise en charge native des conteneurs, ce qui permet des temps de démarrage rapides et une faible consommation de mémoire, essentiels pour une architecture cloud performante.Quarkus facilite le développement de microservices performants. Par exemple, vous pouvez créer un microservice de traitement de paiement en utilisant Quarkus avec le framework de persistance Hibernate pour interagir avec une base de données relationnelle.


4. Utiliser les services cloud

Intégrez les services cloud appropriés dans votre architecture Quarkus. Par exemple, vous pouvez utiliser les services de bases de données gérées, les files d'attente, les services de messagerie, les caches distribués, etc. Quarkus offre des extensions pour se connecter facilement à ces services, ce qui vous permet de tirer parti des fonctionnalités offertes par les fournisseurs de cloud.Intégrez les services cloud dans votre architecture Quarkus pour tirer parti des fonctionnalités offertes. Par exemple, vous pouvez utiliser le service de messagerie d'Amazon Simple Queue Service (SQS) avec Quarkus en utilisant l'extension AWS SDK pour Java pour une communication asynchrone entre vos microservices.


5. Mettre en œuvre la scalabilité et la résilience

Une architecture cloud doit être capable de faire face à des charges variables et de résister à d'éventuelles pannes. Quarkus propose des fonctionnalités pour la mise en œuvre de la scalabilité et de la résilience, telles que l'équilibrage de charge, la mise en cache, la gestion des erreurs et la récupération automatique. Exploitez ces fonctionnalités pour garantir des performances optimales et une disponibilité continue de vos applications.Quarkus offre des fonctionnalités pour mettre en œuvre la scalabilité et la résilience. Par exemple, vous pouvez utiliser Quarkus avec le système de messagerie Apache Kafka pour créer une architecture de traitement des événements distribuée et résiliente.


6. Déployer sur le cloud

Une fois que vous avez développé votre application avec Quarkus, il est temps de la déployer sur le cloud. Quarkus offre une intégration transparente avec les plateformes de déploiement cloud populaires, telles que Kubernetes, Amazon Web Services (AWS), Microsoft Azure et Google Cloud Platform (GCP). Suivez les bonnes pratiques de déploiement pour assurer une configuration et une gestion efficaces de votre application dans le cloud. Une fois que vous avez développé votre application avec Quarkus, vous pouvez la déployer sur une plateforme cloud. Par exemple, vous pouvez déployer votre application Quarkus sur Kubernetes en utilisant les fonctionnalités natives de Quarkus pour les conteneurs.


 

 Conclusion: 

Quarkus est un framework puissant qui permet de créer une architecture cloud moderne et performante en utilisant Java. En suivant les exemples donnés dans cet article, vous pouvez concevoir, développer et déployer une architecture cloud avec Quarkus en exploitant ses fonctionnalités avancées. N'hésitez pas à explorer davantage les possibilités de Quarkus et à consulter la documentation pour approfondir vos connaissances et optimiser vos applications cloud.



samedi 1 avril 2023

Exemple de mise en place de l'architecture hexagonale dans un projet Spring Boot

Architecture hexagonale



L'architecture hexagonale, également connue sous le nom de "ports-and-adapters" ou "architecture en couches", est un style d'architecture logicielle qui vise à séparer les préoccupations de l'application en isolant le domaine de l'application du code qui s'occupe de la logique de l'infrastructure.

Le principe de base de l'architecture hexagonale est de découper l'application en couches, où chaque couche représente un niveau d'abstraction différent. Au centre de l'architecture se trouve le domaine de l'application, qui contient les règles métier et les comportements clés de l'application. Cette couche est entourée par les adaptateurs, qui sont responsables de la communication avec les autres systèmes, de la manipulation des entrées et des sorties, et de la persistance des données.

L'architecture hexagonale a de nombreux avantages, notamment la facilité de testabilité et de maintenabilité, ainsi que la réduction de la complexité du code. En isolant les différentes parties de l'application, il est possible de développer, tester et déployer chaque couche de manière indépendante. Cela permet également de réduire le couplage entre les différentes parties de l'application, ce qui rend le code plus facile à comprendre et à modifier.

En outre, l'architecture hexagonale est très flexible et peut être adaptée à une grande variété de projets et de technologies. Il est possible d'utiliser cette architecture avec des langages de programmation orientés objet ou fonctionnels, ainsi qu'avec des bases de données relationnelles ou NoSQL.

Cependant, il est important de noter que l'architecture hexagonale peut avoir des coûts initiaux plus élevés en termes de développement, car il faut mettre en place la structure de l'architecture dès le début du projet. Cela nécessite une planification minutieuse et une connaissance approfondie des différentes couches de l'architecture.

En résumé, l'architecture hexagonale est un style d'architecture logicielle qui permet de créer des applications robustes et flexibles en isolant les préoccupations de l'application. Bien qu'il puisse avoir des coûts initiaux plus élevés, les avantages en termes de testabilité, de maintenabilité et de réduction de la complexité du code en font une option intéressante pour de nombreux projets.

  1. Tout d'abord, nous créerons trois packages principaux pour les différentes couches de l'architecture :
    • com.example.demo
      • application
      • domain
      • infrastructure
  2. Ensuite, nous créons une classe d'entité dans le package de domaine pour représenter notre modèle métier :
  3. package com.example.demo.domain;
    public class User {
    private Long id;
    private String firstName;
    private String lastName;
    
    // Getters and setters
    }
  4. Nous créons une interface UserRepository dans le package infrastructure pour gérer la persistance des données :
  5. package com.example.demo.infrastructure;
    
    import com.example.demo.domain.User;
    
    public interface UserRepository {
    void save(User user);
    User findById(Long id);
    }
  6. Nous implémentons UserRepository dans une classe UserRepositoryImpl qui utilise JPA pour la persistance des données :
  7. package com.example.demo.infrastructure;
    
    import org.springframework.data.jpa.repository.JpaRepository;
    import org.springframework.stereotype.Repository;
    
    import com.example.demo.domain.User;
    
    @Repository
    public interface UserRepositoryImpl extends JpaRepository, UserRepository {
    
    @Override
    default void save(User user) {
    saveAndFlush(user);
    }
    
    @Override
    default User findById(Long id) {
    return findOne(id);
    }
    }
  8. Nous créons un service UserApplicationService dans le package application pour gérer la logique de l'application :
  9. package com.example.demo.application;
    
    import com.example.demo.domain.User;
    import com.example.demo.infrastructure.UserRepository;
    
    public class UserApplicationService {
    private final UserRepository userRepository;
    
    public UserApplicationService(UserRepository userRepository) {
    this.userRepository = userRepository;
    }
    
    public void createUser(User user) {
    userRepository.save(user);
    }
    
    public User getUser(Long id) {
    return userRepository.findById(id);
    }
    }
  10. Nous créons enfin un contrôleur UserController dans le package application pour gérer les requêtes HTTP :
  11. package com.example.demo.application;
    
    import org.springframework.http.HttpStatus;
    import org.springframework.http.ResponseEntity;
    import org.springframework.web.bind.annotation.*;
    
    import com.example.demo.domain.User;
    
    @RestController
    @RequestMapping("/users")
    public class UserController {
    private final UserApplicationService userApplicationService;
    
    public UserController(UserApplicationService userApplicationService) {
    this.userApplicationService = userApplicationService;
    }
    
    @PostMapping("/")
    public ResponseEntity createUser(@RequestBody User user) {
    userApplicationService.createUser(user);
    return ResponseEntity.status(HttpStatus.CREATED).build();
    }
    
    @GetMapping("/{id}")
    public ResponseEntity getUser(@PathVariable("id") Long id) {
    User user = userApplicationService.getUser(id);
    return ResponseEntity.ok(user);
    }
    }
  12. Pour configurer Spring pour utiliser l'architecture hexagonale, nous pouvons utiliser le design pattern d'injection de dépendances en utilisant la fonctionnalité de configuration automatique de Spring :
  13. package com.example.demo;
    
    import org.springframework.boot.SpringApplication;
    import org.springframework.boot.autoconfigure.SpringBootApplication;
    import org.springframework.context.annotation.Bean;
    
    import com.example.demo
    import com.example.demo.application.UserApplicationService;
    import com.example.demo.infrastructure.UserRepository;
    import com.example.demo.infrastructure.UserRepositoryImpl;
    
    @SpringBootApplication
    public class DemoApplication {
    public static void main(String[] args) {
    SpringApplication.run(DemoApplication.class, args);
    }
    
    @Bean
    public UserRepository userRepository() {
    return new UserRepositoryImpl();
    }
    
    @Bean
    public UserApplicationService userApplicationService(UserRepository userRepository) {
    return new UserApplicationService(userRepository);
    }
    }

En utilisant cette architecture, nous avons isolé notre modèle métier dans le package de domaine, la persistance des données dans le package infrastructure et la logique de l'application dans le package application. Nous avons également utilisé l'injection de dépendances pour relier les différentes couches entre elles.

Cette architecture permet de faciliter la maintenance et l'évolutivité du code en rendant chaque couche indépendante des autres, en minimisant les dépendances et en améliorant la testabilité grâce à la possibilité de réaliser des tests unitaires sur chaque couche de manière isolée.

En résumé, l'architecture hexagonale est un modèle de conception qui permet de mieux organiser les différentes couches d'une application en isolant le modèle métier dans le package de domaine, la persistance des données dans le package infrastructure et la logique de l'application dans le package application. Cette architecture est particulièrement utile pour les projets à long terme où la maintenance et l'évolutivité du code sont importantes.

mercredi 29 mars 2023

Les 6 pratiques de développement Java

  1. Programmation Orientée Objet (POO) : La POO est une approche de développement logiciel qui consiste à créer des objets qui contiennent des données et des méthodes. Les objets peuvent interagir les uns avec les autres pour accomplir des tâches spécifiques.
  2. Architecture hexagonale : Aussi connue sous le nom de "Ports and Adapters", cette approche consiste à séparer les couches applicatives et les dépendances externes (comme les bases de données ou les API) en utilisant des interfaces clairement définies. Cela permet de faciliter la maintenance et la flexibilité de l'application.
  3. Test Driven Development (TDD) : Le TDD est une approche de développement qui consiste à écrire des tests avant de coder la logique de l'application. Cela permet de s'assurer que le code est bien testé et de minimiser les erreurs.
  4. Programmation fonctionnelle : La programmation fonctionnelle est une approche de développement qui se concentre sur les fonctions plutôt que sur les objets. Elle utilise des fonctions pures, c'est-à-dire des fonctions qui n'ont pas d'effets de bord et qui ne modifient pas l'état de l'application, pour améliorer la lisibilité et la maintenabilité du code.
  5. Event Sourcing : L'Event Sourcing est une approche de stockage de données qui consiste à enregistrer toutes les actions (événements) qui modifient l'état de l'application. Cela permet de reconstruire l'état de l'application à partir des événements et de faciliter la gestion des transactions et de la concurrence.
  6. CQRS (Command Query Responsibility Segregation) : Cette approche consiste à séparer les opérations d'écriture (commandes) des opérations de lecture (requêtes) en utilisant des modèles de données différents. Cela permet de simplifier la gestion de l'état de l'application et d'améliorer les performances.

Ces approches peuvent être utilisées seules ou combinées pour créer des applications robustes et maintenables en Java.