• les dernières technologies innovantes en cours de développement ou en phase de lancement sur le marché.
  • les critiques de produits technologiques populaires, tels que les téléphones intelligents, les ordinateurs portables, les tablettes, les écouteurs, les caméras, etc.
  • des conseils sur la façon de rester en sécurité en ligne, notamment en ce qui concerne la protection de la vie privée, la sécurité des données et la prévention des escroqueries en ligne.
  • les dernières nouvelles et mises à jour dans le monde de la technologie, y compris les fusions et acquisitions, les partenariats, les changements de direction, etc.
Affichage des articles dont le libellé est évolutivité. Afficher tous les articles
Affichage des articles dont le libellé est évolutivité. Afficher tous les articles

samedi 1 avril 2023

Exemple de mise en place de l'architecture hexagonale dans un projet Spring Boot

Architecture hexagonale



L'architecture hexagonale, également connue sous le nom de "ports-and-adapters" ou "architecture en couches", est un style d'architecture logicielle qui vise à séparer les préoccupations de l'application en isolant le domaine de l'application du code qui s'occupe de la logique de l'infrastructure.

Le principe de base de l'architecture hexagonale est de découper l'application en couches, où chaque couche représente un niveau d'abstraction différent. Au centre de l'architecture se trouve le domaine de l'application, qui contient les règles métier et les comportements clés de l'application. Cette couche est entourée par les adaptateurs, qui sont responsables de la communication avec les autres systèmes, de la manipulation des entrées et des sorties, et de la persistance des données.

L'architecture hexagonale a de nombreux avantages, notamment la facilité de testabilité et de maintenabilité, ainsi que la réduction de la complexité du code. En isolant les différentes parties de l'application, il est possible de développer, tester et déployer chaque couche de manière indépendante. Cela permet également de réduire le couplage entre les différentes parties de l'application, ce qui rend le code plus facile à comprendre et à modifier.

En outre, l'architecture hexagonale est très flexible et peut être adaptée à une grande variété de projets et de technologies. Il est possible d'utiliser cette architecture avec des langages de programmation orientés objet ou fonctionnels, ainsi qu'avec des bases de données relationnelles ou NoSQL.

Cependant, il est important de noter que l'architecture hexagonale peut avoir des coûts initiaux plus élevés en termes de développement, car il faut mettre en place la structure de l'architecture dès le début du projet. Cela nécessite une planification minutieuse et une connaissance approfondie des différentes couches de l'architecture.

En résumé, l'architecture hexagonale est un style d'architecture logicielle qui permet de créer des applications robustes et flexibles en isolant les préoccupations de l'application. Bien qu'il puisse avoir des coûts initiaux plus élevés, les avantages en termes de testabilité, de maintenabilité et de réduction de la complexité du code en font une option intéressante pour de nombreux projets.

  1. Tout d'abord, nous créerons trois packages principaux pour les différentes couches de l'architecture :
    • com.example.demo
      • application
      • domain
      • infrastructure
  2. Ensuite, nous créons une classe d'entité dans le package de domaine pour représenter notre modèle métier :
  3. package com.example.demo.domain;
    public class User {
    private Long id;
    private String firstName;
    private String lastName;
    
    // Getters and setters
    }
  4. Nous créons une interface UserRepository dans le package infrastructure pour gérer la persistance des données :
  5. package com.example.demo.infrastructure;
    
    import com.example.demo.domain.User;
    
    public interface UserRepository {
    void save(User user);
    User findById(Long id);
    }
  6. Nous implémentons UserRepository dans une classe UserRepositoryImpl qui utilise JPA pour la persistance des données :
  7. package com.example.demo.infrastructure;
    
    import org.springframework.data.jpa.repository.JpaRepository;
    import org.springframework.stereotype.Repository;
    
    import com.example.demo.domain.User;
    
    @Repository
    public interface UserRepositoryImpl extends JpaRepository, UserRepository {
    
    @Override
    default void save(User user) {
    saveAndFlush(user);
    }
    
    @Override
    default User findById(Long id) {
    return findOne(id);
    }
    }
  8. Nous créons un service UserApplicationService dans le package application pour gérer la logique de l'application :
  9. package com.example.demo.application;
    
    import com.example.demo.domain.User;
    import com.example.demo.infrastructure.UserRepository;
    
    public class UserApplicationService {
    private final UserRepository userRepository;
    
    public UserApplicationService(UserRepository userRepository) {
    this.userRepository = userRepository;
    }
    
    public void createUser(User user) {
    userRepository.save(user);
    }
    
    public User getUser(Long id) {
    return userRepository.findById(id);
    }
    }
  10. Nous créons enfin un contrôleur UserController dans le package application pour gérer les requêtes HTTP :
  11. package com.example.demo.application;
    
    import org.springframework.http.HttpStatus;
    import org.springframework.http.ResponseEntity;
    import org.springframework.web.bind.annotation.*;
    
    import com.example.demo.domain.User;
    
    @RestController
    @RequestMapping("/users")
    public class UserController {
    private final UserApplicationService userApplicationService;
    
    public UserController(UserApplicationService userApplicationService) {
    this.userApplicationService = userApplicationService;
    }
    
    @PostMapping("/")
    public ResponseEntity createUser(@RequestBody User user) {
    userApplicationService.createUser(user);
    return ResponseEntity.status(HttpStatus.CREATED).build();
    }
    
    @GetMapping("/{id}")
    public ResponseEntity getUser(@PathVariable("id") Long id) {
    User user = userApplicationService.getUser(id);
    return ResponseEntity.ok(user);
    }
    }
  12. Pour configurer Spring pour utiliser l'architecture hexagonale, nous pouvons utiliser le design pattern d'injection de dépendances en utilisant la fonctionnalité de configuration automatique de Spring :
  13. package com.example.demo;
    
    import org.springframework.boot.SpringApplication;
    import org.springframework.boot.autoconfigure.SpringBootApplication;
    import org.springframework.context.annotation.Bean;
    
    import com.example.demo
    import com.example.demo.application.UserApplicationService;
    import com.example.demo.infrastructure.UserRepository;
    import com.example.demo.infrastructure.UserRepositoryImpl;
    
    @SpringBootApplication
    public class DemoApplication {
    public static void main(String[] args) {
    SpringApplication.run(DemoApplication.class, args);
    }
    
    @Bean
    public UserRepository userRepository() {
    return new UserRepositoryImpl();
    }
    
    @Bean
    public UserApplicationService userApplicationService(UserRepository userRepository) {
    return new UserApplicationService(userRepository);
    }
    }

En utilisant cette architecture, nous avons isolé notre modèle métier dans le package de domaine, la persistance des données dans le package infrastructure et la logique de l'application dans le package application. Nous avons également utilisé l'injection de dépendances pour relier les différentes couches entre elles.

Cette architecture permet de faciliter la maintenance et l'évolutivité du code en rendant chaque couche indépendante des autres, en minimisant les dépendances et en améliorant la testabilité grâce à la possibilité de réaliser des tests unitaires sur chaque couche de manière isolée.

En résumé, l'architecture hexagonale est un modèle de conception qui permet de mieux organiser les différentes couches d'une application en isolant le modèle métier dans le package de domaine, la persistance des données dans le package infrastructure et la logique de l'application dans le package application. Cette architecture est particulièrement utile pour les projets à long terme où la maintenance et l'évolutivité du code sont importantes.

mercredi 29 mars 2023

Guide complet de CQRS (Command Query Responsibility Segregation) en Java pour des performances et une évolutivité améliorées

CQRS (Command Query Responsibility Segregation) - une approche de développement pour améliorer les performances et la scalabilité des applications

L'approche CQRS (Command Query Responsibility Segregation) est une approche de développement qui consiste à séparer les opérations d'écriture et de lecture en utilisant des modèles de données différents. En utilisant cette approche, nous pouvons optimiser les performances et la scalabilité des applications en réduisant la charge sur la base de données et en permettant une gestion plus efficace de l'état de l'application.

Comment fonctionne CQRS ?

CQRS divise une application en deux parties distinctes : une partie pour les opérations d'écriture (ou de commande) et une partie pour les opérations de lecture (ou de requête).

La partie pour les opérations d'écriture traite les commandes pour créer, mettre à jour ou supprimer des données dans l'application. Cette partie est souvent appelée le modèle de commande.

La partie pour les opérations de lecture traite les requêtes pour récupérer des données de l'application. Cette partie est souvent appelée le modèle de requête.

En utilisant des modèles de données différents pour chaque type d'opération, nous pouvons optimiser les performances et simplifier la gestion de l'état de l'application.

Exemple de code Java utilisant CQRS

Voici un exemple de code Java utilisant CQRS pour gérer les opérations de commande et de requête pour une application de gestion de commandes :


public class CreateOrderCommand {
    private final String customerId;
    private final List orderLines;

    public CreateOrderCommand(String customerId, List orderLines) {
        this.customerId = customerId;
        this.orderLines = orderLines;
    }

    public String getCustomerId() {
        return customerId;
    }

    public List getOrderLines() {
        return orderLines;
    }
}

Ensuite, nous créons une classe CommandHandler pour gérer les commandes :


public class CreateOrderCommandHandler {
    private final OrderRepository orderRepository;

    public CreateOrderCommandHandler(OrderRepository orderRepository) {
        this.orderRepository = orderRepository;
    }

    public void handle(CreateOrderCommand command) {
        Order order = new Order(command.getCustomerId(), command.getOrderLines());
        orderRepository.save(order);
    }
}

Maintenant, nous créons une classe Query pour gérer les opérations de lecture :


public class GetOrderQuery {
    private final String orderId;

    public GetOrderQuery(String orderId) {
        this.orderId = orderId;
    }

    public String getOrderId() {
        return orderId;
    }
}

Ensuite, nous créons une classe QueryHandler pour gérer les requêtes :


public class GetOrderQueryHandler {
    private final OrderRepository orderRepository;

    public GetOrderQueryHandler(OrderRepository orderRepository) {
        this.orderRepository = orderRepository;
    }

    public Order handle(GetOrderQuery query) {
        return orderRepository.findById(query.getOrderId());
    }
}

Enfin, nous créons une classe Controller pour gérer les requêtes HTTP et les commandes :
@RestController
public class OrderController {
private final CreateOrderCommandHandler createOrderCommandHandler;
private final GetOrderQueryHandler getOrderQueryHandler;
public OrderController(CreateOrderCommandHandler createOrderCommandHandler,
                       GetOrderQueryHandler getOrderQueryHandler) {
    this.createOrderCommandHandler = createOrderCommandHandler;
    this.getOrderQueryHandler = getOrderQueryHandler;
}

@PostMapping("/orders")
public ResponseEntity createOrder(@RequestBody CreateOrderCommand command) {
    createOrderCommandHandler.handle(command);
    return ResponseEntity.ok().build();
}

@GetMapping("/orders/{orderId}")
public ResponseEntity getOrder(@PathVariable String orderId) {
    GetOrderQuery query = new GetOrderQuery(orderId);
    Order order = getOrderQueryHandler.handle(query);
    return ResponseEntity.ok(order);
}
}

Dans cet exemple, la classe CreateOrderCommand représente une commande pour créer une nouvelle commande avec un client et une liste de lignes de commande. Le CreateOrderCommandHandler gère cette commande en créant une nouvelle commande et en la sauvegardant dans le dépôt d'ordres.

La classe GetOrderQuery représente une requête pour obtenir une commande existante en utilisant son identifiant. Le GetOrderQueryHandler gère cette requête en recherchant la commande correspondante dans le dépôt d'ordres et en la renvoyant.

Enfin, la classe OrderController utilise ces deux classes pour exposer des API REST pour les opérations de création et de lecture des commandes.

Avantages de CQRS

L'utilisation de l'approche CQRS peut offrir plusieurs avantages pour les applications, notamment :

  • Amélioration des performances : En séparant les modèles de données pour les opérations d'écriture et de lecture, nous pouvons optimiser les performances en réduisant la charge sur la base de données et en permettant une gestion plus efficace de l'état de l'application.
  • Scalabilité améliorée : En permettant une gestion plus efficace de l'état de l'application, nous pouvons rendre l'application plus facilement scalable en ajoutant des nœuds supplémentaires.
  • Meilleure évolutivité : En séparant les modèles de données, nous pouvons rendre l'application plus facilement évolutive en permettant des modifications indépendantes des opérations de commande et de requête.
  • Meilleure séparation des responsabilités : En séparant les opérations de commande et de requête, nous pouvons simplifier la gestion de l'état de l'application et réduire les risques de bogues.

Conclusion

CQRS (Command Query Responsibility Segregation) est une approche de développement qui peut aider à améliorer les performances, la scalabilité et l'évolutivité des applications. En séparant les opérations d'écriture et de lecture en utilisant des modèles de données différents, nous pouvons simplifier la gestion de l'état de l'application et optimiser les performances de la base de données. Bien que l'approche CQRS puisse être plus complexe à mettre en œuvre que d'autres approches de développement, elle peut offrir des avantages significatifs pour les applications à forte charge ou à forte concurrence.

vendredi 3 mars 2023

Les meilleures pratiques pour utiliser Kubernetes efficacement

Les meilleures pratiques pour utiliser Kubernetes efficacement

Kubernetes est un système d'orchestration de conteneurs open source qui permet de déployer, de gérer et de mettre à l'échelle des applications dans des conteneurs. Il est largement utilisé dans l'industrie pour des déploiements à grande échelle. Cependant, pour utiliser Kubernetes efficacement, il est important de suivre certaines meilleures pratiques. Dans cet article, nous allons passer en revue quelques-unes de ces pratiques.

1. Planifiez vos ressources

Lorsque vous utilisez Kubernetes, il est important de planifier soigneusement vos ressources. Cela signifie que vous devez connaître les exigences en termes de mémoire, de CPU et de stockage de vos applications. Kubernetes peut gérer la planification de ces ressources, mais cela dépend de la configuration de votre cluster. Si vous ne planifiez pas correctement vos ressources, vous risquez de rencontrer des problèmes de performances.

2. Utilisez les services de manière appropriée

Kubernetes fournit des services pour les applications déployées sur un cluster. Il est important de comprendre comment utiliser ces services de manière appropriée. Par exemple, si vous utilisez un service LoadBalancer, assurez-vous que vous avez des adresses IP disponibles pour allouer aux services. De même, si vous utilisez un service ClusterIP, assurez-vous que les pods ont accès à ce service.

3. Utilisez des configurations déclaratives

Kubernetes utilise des configurations déclaratives pour déployer des applications. Les configurations déclaratives décrivent l'état souhaité du système et Kubernetes se charge de l'appliquer. Cela vous permet de déployer des applications de manière cohérente et répétable. Il est recommandé d'utiliser des configurations déclaratives pour toutes les ressources Kubernetes.

4. Utilisez des outils de déploiement

Il existe plusieurs outils de déploiement pour Kubernetes, tels que Helm et Kustomize. Ces outils permettent de simplifier le déploiement et la gestion des applications sur Kubernetes. Ils peuvent également être utilisés pour gérer les mises à jour et les rollback.

5. Utilisez des contrôleurs

Kubernetes utilise des contrôleurs pour surveiller l'état des ressources et pour s'assurer que l'état désiré est atteint. Les contrôleurs peuvent être utilisés pour gérer la mise à l'échelle automatique des applications, la gestion des déploiements et des mises à jour. Il est recommandé d'utiliser des contrôleurs pour gérer les ressources Kubernetes.

6. Surveillez votre cluster

Il est important de surveiller votre cluster Kubernetes pour détecter les problèmes potentiels et pour éviter les temps d'arrêt. Il existe plusieurs outils de surveillance pour Kubernetes, tels que Prometheus et Grafana. Ces outils peuvent être utilisés pour surveiller les performances des applications, la consommation de ressources et la disponibilité des pods.

7. Utilisez des politiques de sécurité

Kubernetes permet d'appliquer des politiques de sécurité pour protéger les ressources du cluster. Par exemple, vous pouvez utiliser des NetworkPolicies pour contrôler le trafic réseau entre les pods. Il est recommandé d'utiliser des politiques de sécurité pour protéger votre cluster contre les menaces.

8. Évitez d'utiliser des ressources partagées

Il est préférable d'éviter d'utiliser des ressources partagées dans Kubernetes. Par exemple, vous ne devriez pas exécuter plusieurs applications sur un même nœud. Cela peut entraîner des conflits de ressources et des problèmes de performances. Il est recommandé d'utiliser des nœuds dédiés pour chaque application.

Conclusion

En suivant ces meilleures pratiques, vous pouvez utiliser Kubernetes de manière efficace et éviter les problèmes de performances et de sécurité. Planifiez soigneusement vos ressources, utilisez des configurations déclaratives, des outils de déploiement, des contrôleurs, des politiques de sécurité et surveillez votre cluster. Évitez également d'utiliser des ressources partagées pour garantir des performances optimales.