Explore how AI is transforming sports, business, investments, energy efficiency, and science with groundbreaking 2025 innovations everyone can understand.

How AI Is Changing Our World: From Badminton Robots to Business Breakthroughs

How AI Is Changing Our World: From Badminton Robots to Business Breakthroughs

Discover the exciting ways artificial intelligence is making waves beyond the screen—in sports, investment, business, sustainability, and science.

Intro:
Artificial intelligence (AI) often feels like a tech buzzword, but it’s rapidly moving off the lab bench and into everyday life in surprising ways. Imagine a robot playing badminton like a human, or AI systems reshaping entire industries and scientific research faster than ever before. With record investments fueling these breakthroughs and new tools designed to be more energy-efficient and trustworthy, AI is becoming a powerful partner in everything from sports to business to science. Let’s explore some of the most captivating AI stories from 2025 that show how this technology is transforming our world.

AI Robots Take on Badminton – A New Kind of Sports Partner

Picture a four-legged robot moving swiftly around a badminton court, smashing shuttlecocks back and forth with a real player. That’s reality now, thanks to AI-powered robots developed by researchers in Switzerland and China. Using advanced cameras and sensors, these robots track the shuttlecock’s flight, anticipate where it’s going, and react with impressive agility.

How do they get so good? Through something called reinforcement learning — a method where the robot learns by trial and error, similar to how humans practice a sport. This progress hints at a future where robots could train athletes, assist in rehabilitation, or even become teammates in various sports, bridging the gap between humans and machines in physical activities.

The AI Investment Boom: Betting Big on Smarter, More Independent Machines

AI isn't just about making chatbots smarter—it’s evolving into systems that can think, plan, and act on their own, often called agentic AI. This exciting frontier attracted a whopping $2 billion investment in 2025 alone, with startups led by AI veterans raising huge funds to build these autonomous AI helpers.

Why the hype? Agentic AI can manage complex tasks independently—from customer service to managing real estate rentals—freeing humans to focus on creative and strategic work. Investors see this as the next major wave in AI, similar to the early internet boom, with the potential to revolutionize industries and boost productivity in ways we’re just beginning to imagine.

How TCS and Microsoft Are Bringing AI to Workplaces Worldwide

The partnership between Tata Consultancy Services (TCS) and Microsoft shows how AI is reshaping the future of work. Together, they’re training tens of thousands of employees in AI skills and developing AI-powered cloud solutions designed to transform industries like healthcare, finance, and manufacturing.

With tools that help businesses migrate to the cloud and run smarter operations, this collaboration aims to make AI adoption smoother and more effective—helping companies innovate faster, serve customers better, and stay competitive in a digital world.

Making AI Greener and More Trustworthy: The Next Big Leap

AI’s rapid growth creates a big energy appetite, often drawing criticism for its environmental impact. But recent breakthroughs show AI is becoming more energy-efficient and trustworthy. New computer chips inspired by the human brain, smarter algorithms that only use energy when needed, and AI that can forget sensitive data on demand all make AI faster, safer, and greener.

Think of it as shifting from gas-guzzling SUVs to electric cars—AI is learning to do more while using less power, making this powerful technology kinder to our planet and safer for users.

AI Accelerating Science: Faster Discoveries for Everyone

Finally, AI is supercharging science itself. Companies like Google and Microsoft have developed “AI co-scientists”—virtual research partners that help generate new ideas, analyze mountains of data, and even control robotic labs. These AI collaborators are helping scientists accelerate breakthroughs in medicine, materials, energy, and more, potentially speeding up discoveries that could affect all our lives.

By automating routine but complex tasks, AI frees human researchers to think creatively, unlocking innovations at an unprecedented pace.


Takeaway:
Artificial intelligence is no longer just code in the cloud; it’s taking physical form, transforming workplaces, and driving faster scientific discovery—all while becoming more sustainable and reliable. Whether it’s competing on the badminton court or revolutionizing industries, AI’s growing impact is something we can all witness and benefit from. Keeping an eye on these developments can help professionals and curious readers understand how to engage with AI’s exciting future.

Lire la suite

Révolutionnez vos tests automatisés grâce à l'intelligence artificielle : comment utiliser Tensorflow pour améliorer l'efficacité de vos tests de pages Web





L'apprentissage automatique avec Tensorflow peut être utilisé pour automatiser les tests d'une page web frontale en utilisant des modèles de classification pour identifier les éléments de la page et les actions à effectuer sur ces éléments.


Voici un algorithme d'apprentissage des tests automatisés pour une page web frontale en utilisant Tensorflow :


Collecte des données : Collectez des données de test en enregistrant des actions utilisateur sur la page Web et les résultats correspondants. Par exemple, en cliquant sur un bouton "Ajouter au panier", en vérifiant que le produit a été ajouté au panier.


Pré-traitement des données : Pré-traitez les données de test en convertissant les données brutes en un format lisible par Tensorflow. Cela peut inclure l'extraction des caractéristiques pertinentes de la page Web, telles que les balises HTML, les classes CSS, les identifiants et les noms de champ.


Développement du modèle : Développez un modèle Tensorflow pour identifier les éléments de la page Web et les actions à effectuer sur ces éléments. Utilisez un modèle de classification tel que les réseaux de neurones pour entraîner le modèle sur les données de test.


Évaluation du modèle : Évaluez le modèle en utilisant un ensemble de données de test distinct pour mesurer les performances du modèle en termes de précision et de rappel.


Utilisation du modèle : Utilisez le modèle pour exécuter des tests automatiques sur la page Web. Le modèle peut être utilisé pour identifier les éléments de la page Web et effectuer des actions telles que le remplissage de formulaires, la sélection d'options de menu, la soumission de formulaires et la vérification de résultats.


Il est important de noter que l'utilisation de l'apprentissage automatique pour les tests automatisés de la page web frontale n'est pas une solution universelle et qu'elle nécessite une supervision humaine pour s'assurer que les résultats sont cohérents et précis. De plus, la qualité des données de test est cruciale pour l'efficacité du modèle, et il est donc essentiel de s'assurer que les données de test sont représentatives de toutes les actions possibles que les utilisateurs peuvent effectuer sur la page Web.

Lire la suite